H(t)=-8t2+32t

Simple and best practice solution for H(t)=-8t2+32t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-8t2+32t equation:



(H)=-8H^2+32H
We move all terms to the left:
(H)-(-8H^2+32H)=0
We get rid of parentheses
8H^2-32H+H=0
We add all the numbers together, and all the variables
8H^2-31H=0
a = 8; b = -31; c = 0;
Δ = b2-4ac
Δ = -312-4·8·0
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{961}=31$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-31}{2*8}=\frac{0}{16} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+31}{2*8}=\frac{62}{16} =3+7/8 $

See similar equations:

| 2x+5+5x-4=180 | | 2.8n+15.4=-4.2 | | 0,3-3=1,2x+6 | | 3(x+25)+2(x+15)=-25 | | 13b^2-8b-15=0 | | 25+l=92 | | 5x+22=25x+8 | | 1/3-2n-1/4=7/12 | | 5x/7+½=3x/7-¾ | | 9x+15-4x+5=-15 | | 2x+3=21-4x | | -14.94-12.3u=-15.54-12.4u | | 2y+4=65 | | 5x/7+1/2=3x/7-3/4 | | 7x+65=3x-5 | | 6(3x-2)=-2(x+1) | | x=-8.3=1.3 | | 9+2/3=2q-11/7 | | -8.1+x=13.2 | | u=-7 | | u-3+3=-10+3 | | )11x-2)+(19x+3)+(9x+1)=180 | | 2.7+x=29.9 | | 8=4(7p-5) | | -2x=-24-8x | | 2(x+1)+4=3x+2+x | | -3.5x=28 | | 2x-49+46+2x-25+x-42=360 | | 3+(8×n)=-29 | | -u-4u+-4u-5u=-20 | | -157=5x+7(4x+20) | | 2x−9.6=–0.44 |

Equations solver categories