H(t)=-16t2+32t+200

Simple and best practice solution for H(t)=-16t2+32t+200 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t2+32t+200 equation:



(H)=-16H^2+32H+200
We move all terms to the left:
(H)-(-16H^2+32H+200)=0
We get rid of parentheses
16H^2-32H+H-200=0
We add all the numbers together, and all the variables
16H^2-31H-200=0
a = 16; b = -31; c = -200;
Δ = b2-4ac
Δ = -312-4·16·(-200)
Δ = 13761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13761}=\sqrt{9*1529}=\sqrt{9}*\sqrt{1529}=3\sqrt{1529}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-3\sqrt{1529}}{2*16}=\frac{31-3\sqrt{1529}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+3\sqrt{1529}}{2*16}=\frac{31+3\sqrt{1529}}{32} $

See similar equations:

| 1.2x+1/5x=1/6x-1/6 | | 2/3v=1200 | | 2=n+1/5 | | -3(x-3)+5=5(2x-5) | | w-51=41 | | 5q+8=18 | | 7s-0.72=-1.53+6.9s | | 10(x+5)=300 | | 12x+7+6x-7=90 | | -7m+3m=-12 | | x/5+31=27 | | 7.20d=7 | | X+x-2x+10=20-5 | | x/5+31=21 | | -6+2u=18 | | c+62=83 | | 44=-4+3a | | 14x+32=20x-10 | | 20s+-15s+-14=-19 | | 9^3x-5=27^x+2 | | 14x+32+20x-10=180 | | -1.3+5.2=1-2.7r | | 4+2x=2(-x+5)-26 | | 3.6x=2(0.8x+2) | | y=(6,9) | | X^-15x=11 | | 14x+32=20x=10 | | 1/3z+4)-6=2/3(5-z | | 3x+4x–1+90=180 | | 83+x=133 | | -3*x=1001010401 | | 4+25m=73 |

Equations solver categories