H(t)=-16t2+24t+40

Simple and best practice solution for H(t)=-16t2+24t+40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-16t2+24t+40 equation:



(H)=-16H^2+24H+40
We move all terms to the left:
(H)-(-16H^2+24H+40)=0
We get rid of parentheses
16H^2-24H+H-40=0
We add all the numbers together, and all the variables
16H^2-23H-40=0
a = 16; b = -23; c = -40;
Δ = b2-4ac
Δ = -232-4·16·(-40)
Δ = 3089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{3089}}{2*16}=\frac{23-\sqrt{3089}}{32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{3089}}{2*16}=\frac{23+\sqrt{3089}}{32} $

See similar equations:

| 2(x-7)=37 | | -6(x+4)=2(-3x-4) | | (120x-40x-12x-10x)/120=58 | | 3/4a-9=0 | | (7z+12)=(11z-28) | | 7z+12)=(11z-28) | | x+9(4)=43 | | 5x2-40x+108=0 | | (4d-2)-(3d+2)+(-2d)=-1d | | x-3x/10-x/12-58=0 | | x-3x10-x/12-58=0 | | 3c-7=5+c | | x+1=2-3x | | 3b+4+4b=2b+4+5b | | -4/3y-5/7=-2/3 | | x=2-2x | | 0=5x^2-6x-192 | | 2/5x=-32 | | 6x+2x=6x+9 | | 8x-5=25-6 | | 4h-12=180 | | 43=9y-29+9y | | 342=x+(x*1.28) | | 5,6x+2=6 | | (3n-2)(4n+)=0 | | 1,4x+4=0 | | 5x+x+5=3 | | 5x+9x+7=3 | | 4f+4f=-16 | | 3^2(×-1)-8(3^x-2)=1 | | 8f+4=-2 | | 2x+13=21−2x |

Equations solver categories