If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(G)=(G+9)(G-2)
We move all terms to the left:
(G)-((G+9)(G-2))=0
We multiply parentheses ..
-((+G^2-2G+9G-18))+G=0
We calculate terms in parentheses: -((+G^2-2G+9G-18)), so:We add all the numbers together, and all the variables
(+G^2-2G+9G-18)
We get rid of parentheses
G^2-2G+9G-18
We add all the numbers together, and all the variables
G^2+7G-18
Back to the equation:
-(G^2+7G-18)
G-(G^2+7G-18)=0
We get rid of parentheses
-G^2+G-7G+18=0
We add all the numbers together, and all the variables
-1G^2-6G+18=0
a = -1; b = -6; c = +18;
Δ = b2-4ac
Δ = -62-4·(-1)·18
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{3}}{2*-1}=\frac{6-6\sqrt{3}}{-2} $$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{3}}{2*-1}=\frac{6+6\sqrt{3}}{-2} $
| 4x-5=x-+11 | | 6+2x=138 | | ?x8=180 | | 25(12x-8)=50(20-6x) | | Xx9=56 | | .1/16=x/32 | | 100=53+5*y | | 3+15x=-150 | | 7+10-x=3+2x+5 | | 3700=70x | | 34-(34*x/100)=2 | | -8-5(x*4)=-35-6x | | -2x+4=-13 | | --2u-8=5u-1 | | -135=4m-5(-4m+3) | | 3700=70x+3000 | | 34-(34*x/100)=27 | | x/2-x/4=1-3x/2 | | -2-10=z10 | | 34-(34*x/100)=27+1.9/4.9 | | 34-(34*x/100)=27+1.9803921568627/4.9019607843137 | | (33/2)x=-51/2 | | 3x(2+1)=(x2)+(x1) | | 34-(34*19.4/100)=x | | 4(h+3)+1=2(3+2h) | | 3(n+5)=90 | | 3x(2+1)=(x2) | | x-(34*19.4/100)=28 | | 9n-1=6n-7 | | -3(2p-3)-5p=64 | | 125^3x=1/5^18 | | -2w-28=-9(w+7) |