G(2)=3f(2)-2,

Simple and best practice solution for G(2)=3f(2)-2, equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for G(2)=3f(2)-2, equation:



(2)=3G(2)-2.
We move all terms to the left:
(2)-(3G(2)-2.)=0
We add all the numbers together, and all the variables
-(+3G^2-2.)+2=0
We get rid of parentheses
-3G^2+2.+2=0
We add all the numbers together, and all the variables
-3G^2+4=0
a = -3; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-3)·4
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$G_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{3}}{2*-3}=\frac{0-4\sqrt{3}}{-6} =-\frac{4\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-3} $
$G_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{3}}{2*-3}=\frac{0+4\sqrt{3}}{-6} =\frac{4\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-3} $

See similar equations:

| 3r-9=2r+1 | | -10v=-10-8v | | a+5(a-1)+3=11a-2 | | (x+58)=(4x-11) | | 2s+6=-4-10s+7s | | -1.5(7-x)-4=5 | | -4f-4=-4-9f | | (x+58)=(4x+11) | | 7+x=-19 | | 8j-2=4j+2 | | 20/x=70/63 | | 8-3(2x-6)=4(x-6) | | 4k+7=3k+9 | | 7x-130+30=180 | | 10q−6q=4q | | 1/3-2/9x=15+x | | 29=x-16 | | 4^x+2-2^x^2-4x+1=0 | | 5q/6=7+q | | 5p-4=3p+10 | | 5x+x+35+x=385 | | 644=7x | | 2x(5x+5)=9 | | 3/5X-15=5/8x-16 | | X/8+2×-4=6+2(x-1) | | 1.28=x-100/6 | | c=5/9(72-40) | | 10x+11+3x-2+3x+1=180 | | 1.18=x-100/6 | | (6x-3)+129=180 | | 8x+78=2x114 | | (5x+35)+45=180 |

Equations solver categories