F(x)=5(x+5)(x-4)2

Simple and best practice solution for F(x)=5(x+5)(x-4)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=5(x+5)(x-4)2 equation:



(F)=5(F+5)(F-4)2
We move all terms to the left:
(F)-(5(F+5)(F-4)2)=0
We multiply parentheses ..
-(5(+F^2-4F+5F-20)2)+F=0
We calculate terms in parentheses: -(5(+F^2-4F+5F-20)2), so:
5(+F^2-4F+5F-20)2
We multiply parentheses
10F^2-40F+50F-200
We add all the numbers together, and all the variables
10F^2+10F-200
Back to the equation:
-(10F^2+10F-200)
We add all the numbers together, and all the variables
F-(10F^2+10F-200)=0
We get rid of parentheses
-10F^2+F-10F+200=0
We add all the numbers together, and all the variables
-10F^2-9F+200=0
a = -10; b = -9; c = +200;
Δ = b2-4ac
Δ = -92-4·(-10)·200
Δ = 8081
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{8081}}{2*-10}=\frac{9-\sqrt{8081}}{-20} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{8081}}{2*-10}=\frac{9+\sqrt{8081}}{-20} $

See similar equations:

| 2x²+16x-130=0 | | F(x)=4x3+2x2-2x+3 | | (15−2x/5)−(4x+3/2)=0 | | 8x+1=5² | | 2(2x+4.3)=8.6 | | Y=12x+1/4 | | 21x²-4x=-10 | | (x^2+5x)(x^2+5x+10)+24=0 | | x2=15+x2 | | X^2+40=184-10x | | 12-4s=0 | | 625x^2+18x-1=0 | | 7-3(2x-5)=(3x+7) | | n-1+n+n+1=30 | | x2+5x+-48=0 | | 4x+33=-15 | | 40n-40=7(-2n+2) | | X+3=7y | | 40-40=7(-2n+2) | | 3c/4=(C=8 | | 4x+15-2x=20-x | | X^2+y^2+10×+12y=-62 | | -8=-1.3m-2.1m | | 5n+6=30,n= | | 5y=-6+4 | | 4x²+22x-30=0 | | 3x^2=513-6 | | 2x/3+x/5=26 | | x+25=3(x-25) | | 9(e-4)=3e | | 7x=5(x-3) | | 1.3(9+3)=3x+1 |

Equations solver categories