F(x)=3x(x-7)-2(x-4)

Simple and best practice solution for F(x)=3x(x-7)-2(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=3x(x-7)-2(x-4) equation:



(F)=3F(F-7)-2(F-4)
We move all terms to the left:
(F)-(3F(F-7)-2(F-4))=0
We calculate terms in parentheses: -(3F(F-7)-2(F-4)), so:
3F(F-7)-2(F-4)
We multiply parentheses
3F^2-21F-2F+8
We add all the numbers together, and all the variables
3F^2-23F+8
Back to the equation:
-(3F^2-23F+8)
We get rid of parentheses
-3F^2+F+23F-8=0
We add all the numbers together, and all the variables
-3F^2+24F-8=0
a = -3; b = 24; c = -8;
Δ = b2-4ac
Δ = 242-4·(-3)·(-8)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{30}}{2*-3}=\frac{-24-4\sqrt{30}}{-6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{30}}{2*-3}=\frac{-24+4\sqrt{30}}{-6} $

See similar equations:

| 23n=13 | | 625^2r-1=125 | | 2x^2-50x+150=0 | | 19w=3 | | 2x^2=50x+150 | | 7x+1-x=8-(x+7) | | (2x+2)(3x-7)=25 | | x+5/9=17/18 | | 6x^2-8x-14=25 | | y/4-8=15 | | 12+x+(x*2)=60 | | x-2/5=-2/5 | | 8x-(3x+24)=1 | | 2-2^x/3-7=18 | | 4r+8/12=4r-32/4 | | (3/4)x-(2/3)=x+(5/6) | | 1/7+2x/3=1/3(15x-3) | | d•5=8.62 | | 4x+154=-5x+46 | | 7d=17 | | 2(-17x+x)=-14 | | x-2/5=1/15 | | 8x/3-2=30 | | 4x+3=270 | | 3/7z=-9 | | d•6=7.3 | | 4x+3=540 | | 2(x+2)=7(x-1)+9 | | 42=49-u | | x/2.3=7.1 | | Y=0.8x+1.2 | | v-39=6 |

Equations solver categories