F(x)=3(x-2)(x+4)

Simple and best practice solution for F(x)=3(x-2)(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=3(x-2)(x+4) equation:



(F)=3(F-2)(F+4)
We move all terms to the left:
(F)-(3(F-2)(F+4))=0
We multiply parentheses ..
-(3(+F^2+4F-2F-8))+F=0
We calculate terms in parentheses: -(3(+F^2+4F-2F-8)), so:
3(+F^2+4F-2F-8)
We multiply parentheses
3F^2+12F-6F-24
We add all the numbers together, and all the variables
3F^2+6F-24
Back to the equation:
-(3F^2+6F-24)
We add all the numbers together, and all the variables
F-(3F^2+6F-24)=0
We get rid of parentheses
-3F^2+F-6F+24=0
We add all the numbers together, and all the variables
-3F^2-5F+24=0
a = -3; b = -5; c = +24;
Δ = b2-4ac
Δ = -52-4·(-3)·24
Δ = 313
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{313}}{2*-3}=\frac{5-\sqrt{313}}{-6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{313}}{2*-3}=\frac{5+\sqrt{313}}{-6} $

See similar equations:

| 12n-30=9n+6 | | -4x=-20-8x | | 5(8n+7)+7(3(-4+6n)=7 | | (3x+18)+(4x+22)=180 | | 0.7b=84 | | |x+5|-6=2 | | 2x6= | | 2(j+3)=0 | | n/4+13=27 | | 8x-128=180 | | -2x+56=-5 | | 3x=2-4 | | -12=4(m-18)+-8 | | 15b-18b=9 | | 2a+3+1+1=a-2 | | 18-5(3t-2)=12 | | x/4-23=-3 | | 2x-4(x-5)=-9+3x+19 | | 2-3n=14n+19 | | 2/s+8=54 | | -1.125=-b/2 | | 2x+6x=5x-4 | | 16+-x=3x | | 12k+5-3=17k-4k | | 11=m(2)+8 | | 10x+-8=72 | | 2x=x^2+92 | | -5*x-(-7-4*x)-(-2*(3*x-4))=0 | | 2(3-7x)-6x=7(3x-5) | | 113+3x+20=2x+33 | | .5x(x+2.75)=3 | | Y=-0.4x+45, |

Equations solver categories