F(x)=2x-10+x(5x-7)

Simple and best practice solution for F(x)=2x-10+x(5x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=2x-10+x(5x-7) equation:



(F)=2F-10+F(5F-7)
We move all terms to the left:
(F)-(2F-10+F(5F-7))=0
We calculate terms in parentheses: -(2F-10+F(5F-7)), so:
2F-10+F(5F-7)
determiningTheFunctionDomain 2F+F(5F-7)-10
We multiply parentheses
5F^2+2F-7F-10
We add all the numbers together, and all the variables
5F^2-5F-10
Back to the equation:
-(5F^2-5F-10)
We get rid of parentheses
-5F^2+F+5F+10=0
We add all the numbers together, and all the variables
-5F^2+6F+10=0
a = -5; b = 6; c = +10;
Δ = b2-4ac
Δ = 62-4·(-5)·10
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{59}}{2*-5}=\frac{-6-2\sqrt{59}}{-10} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{59}}{2*-5}=\frac{-6+2\sqrt{59}}{-10} $

See similar equations:

| n/1/3=1/2 | | 1/6/n=1/4 | | 3x+x=270 | | 6/n=8 | | A(n)=–5•3^n–1 | | 1/(2x-7)=5 | | 3a^2+15a=12 | | 6t^-13t+6=0 | | 2.9=8+y | | X2+5x-500=0 | | 8x3=54 | | 9p^2+20p+22=0 | | 2x^2+6x-12=x^2+3x-8 | | -3x^2-9x-5=-2x^2-6x-3 | | 2x^2+6x=x^2+3x | | 2x^2-9x=x^2-5x | | -2x^2-12x-8=-x^2-8x-4 | | -3x^2-24x-53=-2x^2-15x-33 | | 3x^2+18x+29=2x^2+11x+19 | | -3x^2+22x-51=-2x^2+13x-31 | | 7/2t-1=1/4t+3 | | -2x^2+4x+16=-x^2+2x+8 | | 2x^2+9x-12=x^2+5x-7 | | 3x^2+3x-4=2x^2+2x-2 | | 3x^2-4=2x^2+2x-2 | | 54=5v+14 | | -3x^2-22x-34=-2x^2-14x-18 | | -3x^2-20x-54=-2x^2-10x-29 | | 2x^2-8x=x^2-5x | | X+3/3-3x-7/5=0 | | 7x/2-18=x/2=0 | | -3x^2+15x-11=-2x^2+10x-7 |

Equations solver categories