F(x)=2(3x+1)(2x-3)

Simple and best practice solution for F(x)=2(3x+1)(2x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=2(3x+1)(2x-3) equation:



(F)=2(3F+1)(2F-3)
We move all terms to the left:
(F)-(2(3F+1)(2F-3))=0
We multiply parentheses ..
-(2(+6F^2-9F+2F-3))+F=0
We calculate terms in parentheses: -(2(+6F^2-9F+2F-3)), so:
2(+6F^2-9F+2F-3)
We multiply parentheses
12F^2-18F+4F-6
We add all the numbers together, and all the variables
12F^2-14F-6
Back to the equation:
-(12F^2-14F-6)
We add all the numbers together, and all the variables
F-(12F^2-14F-6)=0
We get rid of parentheses
-12F^2+F+14F+6=0
We add all the numbers together, and all the variables
-12F^2+15F+6=0
a = -12; b = 15; c = +6;
Δ = b2-4ac
Δ = 152-4·(-12)·6
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{57}}{2*-12}=\frac{-15-3\sqrt{57}}{-24} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{57}}{2*-12}=\frac{-15+3\sqrt{57}}{-24} $

See similar equations:

| x-0.28x=30.3 | | x^2=9000000000 | | 8=26g3 | | (-5x/3)=30 | | 4y=6y-8/3 | | 125x=200 | | (x-2)3=5x | | 13x-9-12x=17 | | X=89x= | | 3) -(x+2)=10 | | 2) 3x+3=x+3 | | 11x^2-24x-275=0 | | 7=x*23,35^2*2,3 | | .m2–11m+24=0 | | 29+3x/13x=-2 | | 14–12x=16x | | 5+40x=45 | | (3x-20)x6-7x=420/7-7x | | 3(-4y+-10)=-78 | | 20x–400=440 | | 3+5^x-2=28 | | 2x^2+15x-168.75=0 | | 5r-28=-1+3(2r-8) | | (x*4)/3=12 | | 2+3x+14=7 | | 3a+8=2a-6 | | 3a-8=2a+6 | | 6x-4=3x-6 | | 3x-27+3=-7x | | x^2+x*3-20=60 | | 3∙(x-2)=2x+4 | | X+5/3=2x/5 |

Equations solver categories