F(x)=16x-8/x

Simple and best practice solution for F(x)=16x-8/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=16x-8/x equation:



(F)=16F-8/F
We move all terms to the left:
(F)-(16F-8/F)=0
Domain of the equation: F)!=0
F!=0/1
F!=0
F∈R
We add all the numbers together, and all the variables
F-(+16F-8/F)=0
We get rid of parentheses
F-16F+8/F=0
We multiply all the terms by the denominator
F*F-16F*F+8=0
Wy multiply elements
F^2-16F^2+8=0
We add all the numbers together, and all the variables
-15F^2+8=0
a = -15; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-15)·8
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30}}{2*-15}=\frac{0-4\sqrt{30}}{-30} =-\frac{4\sqrt{30}}{-30} =-\frac{2\sqrt{30}}{-15} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30}}{2*-15}=\frac{0+4\sqrt{30}}{-30} =\frac{4\sqrt{30}}{-30} =\frac{2\sqrt{30}}{-15} $

See similar equations:

| -10=8(3p+10)+9p | | 5m-9=15-2m | | −3(n+1)=12 | | 15x/30=60/75 | | 5x-10=x+4+x+4 | | 4(w-2)-1=-7(-3w+1)-w | | z/8+5=−48 | | 5(2x+3)=7x+8 | | Y/2-15=3u | | 7=r3+4 | | -5w-10=-3(w+6) | | f/3+7=11 | | 14x+4=2(7x–2) | | 4sX4=6 | | 7x-2(x+1))+18=8x-11 | | -6w+3(w+2)=-24 | | 14b+4=2(7b–2) | | 5+4y=65 | | (3y+1)(3y+1)=0 | | 7m=5=54 | | 3+4xx=x+14 | | g=48 | | 15x+6=3(5x+3) | | w-9=0;w-9 | | 240x+240=336x-432 | | 5h-12=38 | | 27/18=3/2x | | (6x+4)=(4x–8) | | –16−p=3p+16 | | j-1+8=12 | | 51=3(3m+27) | | j–1+ 8=12 |

Equations solver categories