F(x)=-x2+x+6

Simple and best practice solution for F(x)=-x2+x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-x2+x+6 equation:



(F)=-F2+F+6
We move all terms to the left:
(F)-(-F2+F+6)=0
We add all the numbers together, and all the variables
-(-1F^2+F+6)+F=0
We get rid of parentheses
1F^2-F+F-6=0
We add all the numbers together, and all the variables
F^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| 2x^2+10x-108=0 | | x^2+5x=3x+15 | | 21=3(2x+5) | | (5x–13)/(6x–8)=4/5 | | (x+1)2=7x-5 | | 12p^2-11p-12=0 | | 5x2-7=488 | | -y=17-2y | | (x+6)2=24 | | 10x2+2=282 | | 7-x÷3=5 | | 8x2-7=193 | | 9+5y-7y+4y=11 | | 10x-12x=49-9x | | 8z+6=22 | | 13x+2x-6x=45 | | 18x-24x=51-7x | | -8x-9=19x+15 | | (x-5)(x+5)=144 | | m÷2=6-2m÷3 | | 8x+34-7x=43 | | 3x+176=238 | | 0=-5x^2+10x+1.6 | | 12x+30=7x+55 | | 3x+5)=12-2x | | 5z-9=z+11 | | 4x-12-3x+15-3=25 | | X2-56x+784=0 | | 7x+9x-4x=55+5 | | x^2+10x-61=0 | | 8=a/7 | | x=12,2x-8 |

Equations solver categories