F(x)=-3(x-10)(x-4)

Simple and best practice solution for F(x)=-3(x-10)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=-3(x-10)(x-4) equation:



(F)=-3(F-10)(F-4)
We move all terms to the left:
(F)-(-3(F-10)(F-4))=0
We multiply parentheses ..
-(-3(+F^2-4F-10F+40))+F=0
We calculate terms in parentheses: -(-3(+F^2-4F-10F+40)), so:
-3(+F^2-4F-10F+40)
We multiply parentheses
-3F^2+12F+30F-120
We add all the numbers together, and all the variables
-3F^2+42F-120
Back to the equation:
-(-3F^2+42F-120)
We get rid of parentheses
3F^2-42F+F+120=0
We add all the numbers together, and all the variables
3F^2-41F+120=0
a = 3; b = -41; c = +120;
Δ = b2-4ac
Δ = -412-4·3·120
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{241}}{2*3}=\frac{41-\sqrt{241}}{6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{241}}{2*3}=\frac{41+\sqrt{241}}{6} $

See similar equations:

| 2x+28/4=9 | | 2(4y-4=40 | | 15/8y=-9/2 | | t=25t | | 17/8y=-28/36 | | 4x-2-x=3x-3 | | c/12+12=2 | | 5m-14=37 | | 3(x+6)+2=15+2x | | 6/p=36 | | 3x/4+1/2=30-2x | | X/3+x/8=11/28 | | x-17/10=7/10 | | 2x/5-10=50 | | 4n-0.7=10 | | 27-2y=13 | | 3x-54=30 | | -8x+x=9 | | 21x=-24 | | (x−42)·3=72 | | z-8=3;z= | | f(41)=0.4(41)^2-36(41)+1000 | | 3((x+4)=x+14 | | x+31/4=71/2 | | 2y=18;y= | | 6x/7=9 | | 11n-6=335 | | 18+s=24 | | 4(x-2)=39(x+1) | | 125=-5n | | (2(x+5)/3)=8 | | (2(x+5)/3)=24 |

Equations solver categories