F(x)=(x-7)(3x-1)

Simple and best practice solution for F(x)=(x-7)(3x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x-7)(3x-1) equation:



(F)=(F-7)(3F-1)
We move all terms to the left:
(F)-((F-7)(3F-1))=0
We multiply parentheses ..
-((+3F^2-1F-21F+7))+F=0
We calculate terms in parentheses: -((+3F^2-1F-21F+7)), so:
(+3F^2-1F-21F+7)
We get rid of parentheses
3F^2-1F-21F+7
We add all the numbers together, and all the variables
3F^2-22F+7
Back to the equation:
-(3F^2-22F+7)
We add all the numbers together, and all the variables
F-(3F^2-22F+7)=0
We get rid of parentheses
-3F^2+F+22F-7=0
We add all the numbers together, and all the variables
-3F^2+23F-7=0
a = -3; b = 23; c = -7;
Δ = b2-4ac
Δ = 232-4·(-3)·(-7)
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-\sqrt{445}}{2*-3}=\frac{-23-\sqrt{445}}{-6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+\sqrt{445}}{2*-3}=\frac{-23+\sqrt{445}}{-6} $

See similar equations:

| 9/6=x/7.74 | | 4x+8/5=7+5x/13 | | -5x+35=4/ | | x+3,6=0 | | 14v^2+56v-24=0 | | 2a−2a−4=−64=−6 | | 7v^2+28v-12=0 | | A52x+52=52x-78 | | 8r9−15r=27 | | B=x+2 | | x2−8x−84=0 | | k/11+5=-3 | | 33+12x-12=21 | | 1+d6=1 | | -5x-3/4=-7 | | 45=(a-32)÷1.8 | | -8(b-8)=-16 | | y=1146+4y | | 4(3x+2)=2(x−6) | | 4x+12-6x=13 | | (1/4)8y-4)=2(2.5y+7) | | -6(v-8)-5=37 | | 159=-3+2a^2 | | 1.8(a-32)=45 | | 3.00x=2.00 | | 5(x+5)=2x+1 | | 4=3v-11 | | 8x-17=2x+13 | | -3r+5=5 | | 7(y+6)=8(y+4) | | -14=7(b-4) | | 8.6+0.9c=14.9 |

Equations solver categories