F(x)=(x-15)(x-22)

Simple and best practice solution for F(x)=(x-15)(x-22) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x-15)(x-22) equation:



(F)=(F-15)(F-22)
We move all terms to the left:
(F)-((F-15)(F-22))=0
We multiply parentheses ..
-((+F^2-22F-15F+330))+F=0
We calculate terms in parentheses: -((+F^2-22F-15F+330)), so:
(+F^2-22F-15F+330)
We get rid of parentheses
F^2-22F-15F+330
We add all the numbers together, and all the variables
F^2-37F+330
Back to the equation:
-(F^2-37F+330)
We add all the numbers together, and all the variables
F-(F^2-37F+330)=0
We get rid of parentheses
-F^2+F+37F-330=0
We add all the numbers together, and all the variables
-1F^2+38F-330=0
a = -1; b = 38; c = -330;
Δ = b2-4ac
Δ = 382-4·(-1)·(-330)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{31}}{2*-1}=\frac{-38-2\sqrt{31}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{31}}{2*-1}=\frac{-38+2\sqrt{31}}{-2} $

See similar equations:

| 134+259x=-5113324 | | x+4.75=15.25 | | 4g-4=4(7-g) | | x=x-3^2 | | 4(-4x-4)-3=-131 | | 1.2/1.8=3/n | | 4y-6=102 | | 5^2a+24=(1/25)^a-6 | | 2x^2+4x=-22 | | 10-9n=-170 | | 4g-4=(7-g) | | 3x-30=66 | | 6x=—36 | | 5^2a+24=(1/25)a-6 | | 3x-30=114 | | j+2j+3=18 | | –510=–15k | | -10+3=-7x+12 | | F(-1)=-x+5 | | 3(4-8r)=156 | | 5^-2w+2=625 | | -1735=-75+67x | | 1/3x+5=1/3 | | 25x+3+21x+x=180 | | b5=816 | | -8x-8(4x+8)=-344 | | 9(a=4=6(a-3) | | w+9.30=14.3 | | 5y-59=180 | | 8x-6=10x-12=180 | | -9-59n=-82954 | | w-14.3=9.30 |

Equations solver categories