F(x)=(x-1)(x-1)

Simple and best practice solution for F(x)=(x-1)(x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x-1)(x-1) equation:



(F)=(F-1)(F-1)
We move all terms to the left:
(F)-((F-1)(F-1))=0
We multiply parentheses ..
-((+F^2-1F-1F+1))+F=0
We calculate terms in parentheses: -((+F^2-1F-1F+1)), so:
(+F^2-1F-1F+1)
We get rid of parentheses
F^2-1F-1F+1
We add all the numbers together, and all the variables
F^2-2F+1
Back to the equation:
-(F^2-2F+1)
We add all the numbers together, and all the variables
F-(F^2-2F+1)=0
We get rid of parentheses
-F^2+F+2F-1=0
We add all the numbers together, and all the variables
-1F^2+3F-1=0
a = -1; b = 3; c = -1;
Δ = b2-4ac
Δ = 32-4·(-1)·(-1)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{5}}{2*-1}=\frac{-3-\sqrt{5}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{5}}{2*-1}=\frac{-3+\sqrt{5}}{-2} $

See similar equations:

| 4(2x+9)-7=7 | | 1.8(3-x)=0.75(x-3) | | −8(x−5)=7. | | -20x+10=9x-48 | | 6/4=c/8 | | y+16=48 | | 3x-2-5x+7=15x-11 | | 5/2y+31/2=2y/3+5 | | 11=4i+3 | | 2x=7(3=-1) | | u^2+16u–17=0 | | x+-5=45 | | 120/x=20/100 | | 9/3=w/5 | | −3+5h​ =8 | | 13x+2+5x-7=3x-4 | | 2/3n-16=-24 | | A=6,b=5 | | 3+2i=9 | | 0.091=1–z0.091=1–z0.091=1–z0.091=1–z0.091=1–z0.091=1–z | | 6x+2x-3=-2x+27 | | 3x(6=9) | | 36+12x=168 | | 0.091=1–z | | 3/6=w/12 | | y=-4+6(2,-1) | | 9z-7+10z=–7−8z | | -9(7-a)=108 | | 4c+58+9c-99=180 | | 6p+10=10p-10+p | | 9x+21=10x+11 | | 5/4=a/8 |

Equations solver categories