F(x)=(x+7)(x-13)

Simple and best practice solution for F(x)=(x+7)(x-13) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x+7)(x-13) equation:



(F)=(F+7)(F-13)
We move all terms to the left:
(F)-((F+7)(F-13))=0
We multiply parentheses ..
-((+F^2-13F+7F-91))+F=0
We calculate terms in parentheses: -((+F^2-13F+7F-91)), so:
(+F^2-13F+7F-91)
We get rid of parentheses
F^2-13F+7F-91
We add all the numbers together, and all the variables
F^2-6F-91
Back to the equation:
-(F^2-6F-91)
We add all the numbers together, and all the variables
F-(F^2-6F-91)=0
We get rid of parentheses
-F^2+F+6F+91=0
We add all the numbers together, and all the variables
-1F^2+7F+91=0
a = -1; b = 7; c = +91;
Δ = b2-4ac
Δ = 72-4·(-1)·91
Δ = 413
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{413}}{2*-1}=\frac{-7-\sqrt{413}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{413}}{2*-1}=\frac{-7+\sqrt{413}}{-2} $

See similar equations:

| 2^x+1+2^x+2=12 | | 8x+35=11x+35 | | 134-y=268 | | 100=3.142^2×h | | (86+95+84+97+x)/5=90 | | 180-x=3(90-x)-46 | | 8d+(-9d+6)=15 | | 16x+19=-113-6x | | -3x-4(8x+1)=4(7x-1) | | 5+2/3x=+20 | | 13s+5s−8s−6s=20 | | 1/3x=(21-3) | | 3{q-5}=2{q+5} | | 1728=3.14x^2×22 | | 2x+15=4x+8 | | 7x=4=5x+16 | | -2|3x+2|=-12 | | 6x−1=1 | | -2|3x+2=-12 | | 2*(x+1)*1/2=x*1 | | 1728=3.14r^2×22 | | -w+41=234 | | 7x-(3x+2)=14 | | 4+10=3(12x+3) | | 8+2y=114 | | 11y-32=121 | | 15z-7=14z+14 | | 6p-76=p+49 | | t^2+70t=435 | | 8n-6=n+6 | | 825=(x^2)-8 | | -5x-4=10-2x |

Equations solver categories