F(x)=(x+5)(X+11)

Simple and best practice solution for F(x)=(x+5)(X+11) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(x+5)(X+11) equation:



(F)=(F+5)(F+11)
We move all terms to the left:
(F)-((F+5)(F+11))=0
We multiply parentheses ..
-((+F^2+11F+5F+55))+F=0
We calculate terms in parentheses: -((+F^2+11F+5F+55)), so:
(+F^2+11F+5F+55)
We get rid of parentheses
F^2+11F+5F+55
We add all the numbers together, and all the variables
F^2+16F+55
Back to the equation:
-(F^2+16F+55)
We add all the numbers together, and all the variables
F-(F^2+16F+55)=0
We get rid of parentheses
-F^2+F-16F-55=0
We add all the numbers together, and all the variables
-1F^2-15F-55=0
a = -1; b = -15; c = -55;
Δ = b2-4ac
Δ = -152-4·(-1)·(-55)
Δ = 5
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{5}}{2*-1}=\frac{15-\sqrt{5}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{5}}{2*-1}=\frac{15+\sqrt{5}}{-2} $

See similar equations:

| -14x^2+84x+60=0 | | 3.5y+8=12.5y | | 5x-65+3x=2-11x+9 | | F(x)=(x+5); | | (x-5)^2=48 | | -1÷-5/8=x | | -(7-7a)-(13+6a)-17=-(6-6a)+(-a)+5 | | 14+5x=6x-11 | | -5/8x+6=5 | | 15b^2+14b-4=0 | | -7a+9=32+49 | | 200=-2x^2+40x | | a·6=0.6 | | 36+u=6(7-u)=u | | Y=2/3z+4 | | Z=15-20i | | (5x-2)=144 | | 9x-16=16+x | | 18x+(-9)=-1 | | y=2,15,2.95,3.05,3.15 | | 2p+11=1p+4 | | -4m+14-8(m-5)=5m-(8m-3)-3m+9 | | 9-(4x-2)=15x-2 | | 6p+3=6+5p | | 15a+40=(-2)-1 | | 1/6)12z-18)=2z-3 | | 2.4(m-3)+3.2=8.2 | | 8x=2-5x | | 6x-1=2(3x-16) | | -4+5=-4y-8 | | 6x-1=2(3x-1 | | 5/3s=15/3+3/2s |

Equations solver categories