F(x)=(9x-1)(7x-3)

Simple and best practice solution for F(x)=(9x-1)(7x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(9x-1)(7x-3) equation:



(F)=(9F-1)(7F-3)
We move all terms to the left:
(F)-((9F-1)(7F-3))=0
We multiply parentheses ..
-((+63F^2-27F-7F+3))+F=0
We calculate terms in parentheses: -((+63F^2-27F-7F+3)), so:
(+63F^2-27F-7F+3)
We get rid of parentheses
63F^2-27F-7F+3
We add all the numbers together, and all the variables
63F^2-34F+3
Back to the equation:
-(63F^2-34F+3)
We add all the numbers together, and all the variables
F-(63F^2-34F+3)=0
We get rid of parentheses
-63F^2+F+34F-3=0
We add all the numbers together, and all the variables
-63F^2+35F-3=0
a = -63; b = 35; c = -3;
Δ = b2-4ac
Δ = 352-4·(-63)·(-3)
Δ = 469
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-\sqrt{469}}{2*-63}=\frac{-35-\sqrt{469}}{-126} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+\sqrt{469}}{2*-63}=\frac{-35+\sqrt{469}}{-126} $

See similar equations:

| 3t−t−t+3t−t=9 | | f/9=45 | | 2(x+5)-3x+12(2-x)=13 | | 3n–1=–4 | | 10n-2n=16 | | 5f=22 | | .12-x=9 | | 1.7x+9=23 | | s8–10=–11 | | -3m=-18-m | | 2x3+14x2-4x=0 | | 14+2q=4 | | 3x+58=85 | | 12g-2g=10 | | X-1,5x=90 | | Yx31.4=31.4 | | m9+1=–1 | | 79-x=99-3x | | 8k+18=10k | | 350=12(x+20)x20= | | m/3+50=59 | | 6g+6=60 | | 3(4a-7)=39 | | g-1=9 | | -2.6+v/7=13.8 | | 16p⁴-p²=0 | | -45n+45=90 | | x-14=122 | | 28=17+n | | n7=35 | | -12y-3=39 | | m/25=2.2 |

Equations solver categories