F(x)=(8x-3)(2x+7)

Simple and best practice solution for F(x)=(8x-3)(2x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(8x-3)(2x+7) equation:



(F)=(8F-3)(2F+7)
We move all terms to the left:
(F)-((8F-3)(2F+7))=0
We multiply parentheses ..
-((+16F^2+56F-6F-21))+F=0
We calculate terms in parentheses: -((+16F^2+56F-6F-21)), so:
(+16F^2+56F-6F-21)
We get rid of parentheses
16F^2+56F-6F-21
We add all the numbers together, and all the variables
16F^2+50F-21
Back to the equation:
-(16F^2+50F-21)
We add all the numbers together, and all the variables
F-(16F^2+50F-21)=0
We get rid of parentheses
-16F^2+F-50F+21=0
We add all the numbers together, and all the variables
-16F^2-49F+21=0
a = -16; b = -49; c = +21;
Δ = b2-4ac
Δ = -492-4·(-16)·21
Δ = 3745
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-\sqrt{3745}}{2*-16}=\frac{49-\sqrt{3745}}{-32} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+\sqrt{3745}}{2*-16}=\frac{49+\sqrt{3745}}{-32} $

See similar equations:

| 7=2m+5 | | (y+7)^2-49=0 | | 94=2n(-3n) | | (y+7)2-49=0 | | (x)^2+(x+3)^2=5 | | -2x+7=1x-9 | | -9n-8=-10n+-7 | | (x-0)^2+(x+3)^2=5 | | -2x+9=X+7 | | -8x+2=4(x+4) | | 5(2x-1)=14+3(x-2) | | -377=x-1,000 | | 6+3/5x=7/10x | | -8x+7=4(x-6) | | 6+35b=710b | | 30+59.45x=64.45x | | 3(x+3x)=12 | | 3.1(13.5r-5.3)=91.8 | | 6x-4=3(-x+2) | | 2x-4=3(-x+2) | | r/2+6=-8 | | -4(-2y–7)=12y+4 | | 5x-2=4(-x+3) | | 105=-12n(-5n) | | 2x-12=3(-x+4) | | 3x-4=-2(x+3) | | -8m-m=7m-8 | | 5u+3=u-9 | | 20c+16=3c–1 | | 1/3(2x-4)=5/9-x | | 8(7x+9)=56 | | 8x+10/2=2(x+10) |

Equations solver categories