F(x)=(5x+7)(4-3x)

Simple and best practice solution for F(x)=(5x+7)(4-3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(5x+7)(4-3x) equation:



(F)=(5F+7)(4-3F)
We move all terms to the left:
(F)-((5F+7)(4-3F))=0
We add all the numbers together, and all the variables
F-((5F+7)(-3F+4))=0
We multiply parentheses ..
-((-15F^2+20F-21F+28))+F=0
We calculate terms in parentheses: -((-15F^2+20F-21F+28)), so:
(-15F^2+20F-21F+28)
We get rid of parentheses
-15F^2+20F-21F+28
We add all the numbers together, and all the variables
-15F^2-1F+28
Back to the equation:
-(-15F^2-1F+28)
We get rid of parentheses
15F^2+1F+F-28=0
We add all the numbers together, and all the variables
15F^2+2F-28=0
a = 15; b = 2; c = -28;
Δ = b2-4ac
Δ = 22-4·15·(-28)
Δ = 1684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1684}=\sqrt{4*421}=\sqrt{4}*\sqrt{421}=2\sqrt{421}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{421}}{2*15}=\frac{-2-2\sqrt{421}}{30} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{421}}{2*15}=\frac{-2+2\sqrt{421}}{30} $

See similar equations:

| x+(x/2)=22 | | k÷4=2 | | 4(4s+2)=56 | | (x+3)=18-2 | | 8+-6y+6y=8 | | 9x+40=83 | | 3x=7x-28-4 | | 4+55=44x+12 | | y−14= 4 | | -12/u=3 | | 4 = 12p | | 8+2g=16 | | 5^x-1=25 | | 10x-6=9x+4 | | 3^2(x+1)-8.3^x+1=9 | | 2z/9+8=-3 | | 10/3x+1/2=-1/2x-31/6 | | 9h-21=20 | | 2(10x-23)+106=360 | | -10/3x+1/2=-1/2x-31/6 | | 9x-19=8x+3 | | 8m-4m-6-3+5m=64-1 | | (7x+5x)×4=56 | | 3y^2+24=-18y | | 5(x+7)=5x+40 | | 3x+18/6=27/3 | | 4x+3=5+3x | | 4x/7+7=2 | | 4w+3=20-3 | | 4x.8x=0 | | 5(3x-1)=-35 | | x/10+9=0 |

Equations solver categories