F(x)=(4x+3)(2x-5)

Simple and best practice solution for F(x)=(4x+3)(2x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(4x+3)(2x-5) equation:



(F)=(4F+3)(2F-5)
We move all terms to the left:
(F)-((4F+3)(2F-5))=0
We multiply parentheses ..
-((+8F^2-20F+6F-15))+F=0
We calculate terms in parentheses: -((+8F^2-20F+6F-15)), so:
(+8F^2-20F+6F-15)
We get rid of parentheses
8F^2-20F+6F-15
We add all the numbers together, and all the variables
8F^2-14F-15
Back to the equation:
-(8F^2-14F-15)
We add all the numbers together, and all the variables
F-(8F^2-14F-15)=0
We get rid of parentheses
-8F^2+F+14F+15=0
We add all the numbers together, and all the variables
-8F^2+15F+15=0
a = -8; b = 15; c = +15;
Δ = b2-4ac
Δ = 152-4·(-8)·15
Δ = 705
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{705}}{2*-8}=\frac{-15-\sqrt{705}}{-16} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{705}}{2*-8}=\frac{-15+\sqrt{705}}{-16} $

See similar equations:

| 2x^2-3x+4=x^2-6x+2 | | 9+k=18= | | F(4)=(4x+3)(2x-5) | | (2⁄3)a+1=16-a | | 7x-11x-13.8=14.2 | | 9^x=125 | | 3(x+4)+11=28 | | 5x^2-10x-19=0 | | 5x+2+1=-3+10x | | 90=3x+14+46 | | 0.1x(x+10)=0,3x-4 | | a–4=3a+8 | | 3(4n-2)+5=47 | | 8x-35x-11=90 | | 6-x=x^2-20x+100 | | (-3*4)-8y=-14 | | p+3=p+5 | | (4x+2)°(x+18)°=50° | | 5x+3=2(x+1) | | 4.1x3.7= | | 2m+4(m-3)=7m-(4) | | 6.8=-3.9-(-8.9-1)-2x | | (4y-2)(3-y)=0 | | 1/8a+(-7)=0 | | 42=a-19 | | 29.5x+548=2023 | | (x+24)3x=180 | | -4y^2+14y-6=0 | | (4x+19)+(9x-8)+90(7x-3)+122=540 | | g–62=14 | | 260-6x=300-10x | | 0.3*m=6 |

Equations solver categories