F(x)=(4-x)(7+x)

Simple and best practice solution for F(x)=(4-x)(7+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(4-x)(7+x) equation:



(F)=(4-F)(7+F)
We move all terms to the left:
(F)-((4-F)(7+F))=0
We add all the numbers together, and all the variables
F-((-1F+4)(F+7))=0
We multiply parentheses ..
-((-1F^2-7F+4F+28))+F=0
We calculate terms in parentheses: -((-1F^2-7F+4F+28)), so:
(-1F^2-7F+4F+28)
We get rid of parentheses
-1F^2-7F+4F+28
We add all the numbers together, and all the variables
-1F^2-3F+28
Back to the equation:
-(-1F^2-3F+28)
We get rid of parentheses
1F^2+3F+F-28=0
We add all the numbers together, and all the variables
F^2+4F-28=0
a = 1; b = 4; c = -28;
Δ = b2-4ac
Δ = 42-4·1·(-28)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{2}}{2*1}=\frac{-4-8\sqrt{2}}{2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{2}}{2*1}=\frac{-4+8\sqrt{2}}{2} $

See similar equations:

| x/5+5=1 | | -8u-34=5(u+1) | | x+15=0.5x+20 | | 3/4x-3=24 | | -8u-34=5(u-1) | | 3v-30=4(3v-3) | | .75x-3+66=90 | | 4(y+6)=-2+48 | | 164=-4(-1+8n) | | 4(y+3)-8y=-4 | | 9v+14=6v+2 | | 5f=1/6 | | -7(x+4)+7=-6x-23 | | -2-13.8x=-8x-96x+1) | | .55*x=540 | | -1=1-5a+3 | | 4(w-8)-6w=-34 | | 2(5x+2)-4(×-3)=×+36 | | -5+6b-4b=-7 | | 0.8=-1-x/10 | | 6t+9t=30 | | 2y^2-10y+75=0 | | .55*x=490 | | 5.9•(x-12.5)=53.1 | | 5x+8-2x=26= | | -23=r+5+6r | | X=x^2-108+21 | | x^2+4+x+5x+12=180 | | 2x+13+12=35 | | x+8-2x=26= | | (x+1)/4=21/4 | | 3(2x+6=-54 |

Equations solver categories