If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=(330+15F)(6-0.25F)
We move all terms to the left:
(F)-((330+15F)(6-0.25F))=0
We add all the numbers together, and all the variables
F-((15F+330)(-0.25F+6))=0
We multiply parentheses ..
-((+0F^2+90F+0F+1980))+F=0
We calculate terms in parentheses: -((+0F^2+90F+0F+1980)), so:We add all the numbers together, and all the variables
(+0F^2+90F+0F+1980)
We get rid of parentheses
0F^2+90F+0F+1980
We add all the numbers together, and all the variables
F^2+91F+1980
Back to the equation:
-(F^2+91F+1980)
F-(F^2+91F+1980)=0
We get rid of parentheses
-F^2+F-91F-1980=0
We add all the numbers together, and all the variables
-1F^2-90F-1980=0
a = -1; b = -90; c = -1980;
Δ = b2-4ac
Δ = -902-4·(-1)·(-1980)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-6\sqrt{5}}{2*-1}=\frac{90-6\sqrt{5}}{-2} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+6\sqrt{5}}{2*-1}=\frac{90+6\sqrt{5}}{-2} $
| -4x+6x=-5 | | 18=p/6 | | 6(n+3)=9n-2 | | 5x+23x-8=7(4x+4) | | 13=-2a+a | | 6+4(5x-6)=9-5(2x+1) | | 12z-6+15=27z-5 | | 1/8(x+4)=7 | | −4(v−2)=−4(v−8)−8v | | 4/5=n+13/35 | | |2t-4|=8 | | 5g+(-20+3g)=1-g | | -t^2+245=0 | | 3x+0.5=21.5 | | m+10/3=m | | 2(−7a+6)=−16−7a | | 5(u-3)-8u=3 | | 5x+456=7x-89 | | -2|d|=14 | | 2x-33=1x+19 | | -2(x-6)=2(x+8) | | 12/x-4+(4)=8/x-4 | | 25x+210=17 | | -2=m+10/3 | | 25) 2y-3=y+5 | | 120x-60=15(8x-4) | | 5x-17=19+19=9 | | 6(5-8v)+12=45 | | X-100+x=12 | | 2(x+4)=8x+6-6x+2 | | -14c=-10c-4 | | 65+(15+9)w=180 |