If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=100-4.9F^2
We move all terms to the left:
(F)-(100-4.9F^2)=0
We get rid of parentheses
4.9F^2+F-100=0
a = 4.9; b = 1; c = -100;
Δ = b2-4ac
Δ = 12-4·4.9·(-100)
Δ = 1961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1961}=\sqrt{1*1961}=\sqrt{1}*\sqrt{1961}=1\sqrt{1961}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1\sqrt{1961}}{2*4.9}=\frac{-1-1\sqrt{1961}}{9.8} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1\sqrt{1961}}{2*4.9}=\frac{-1+1\sqrt{1961}}{9.8} $
| -7x-(-2x+4)+3(-3x-6)+19=14x+2(12-7x)+4(-x+10) | | 2x-20=35x-8 | | 0.12x+8=188 | | 4k–14=6 | | 14-b=12 | | 7r-4=9 | | 6/11=y/33 | | a/9=23/63 | | 19.9=9y-8= | | 16-4x=128-3x | | 6x(+2)=18 | | 72f=144 | | 2x+12=3x+20 | | z2+5=–5 | | (9+6x)/3=3x-14 | | c-3.9=14.2 | | 123.75h=16.50+4 | | −(7x−25)=10(7−x) | | 3(u+5)=6u-12 | | 2(x+2)+2=5(x+5) | | -9x-18=-23 | | 16.50-4h=123.75 | | 2+(3c-4)=5c-4 | | 16.50h-4=123.75 | | n+(-5)=40 | | 2+(3c-4)=4c-4 | | -5v+49=-7(v-9) | | 2+(3c-4)=-1c-4 | | 3x+4=4x-x= | | 2+(3c-4)=-4c-4 | | 123.75=4h+16.50 | | w7=20 |