F(r)=(r-3)(2r-8)

Simple and best practice solution for F(r)=(r-3)(2r-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(r)=(r-3)(2r-8) equation:



(F)=(F-3)(2F-8)
We move all terms to the left:
(F)-((F-3)(2F-8))=0
We multiply parentheses ..
-((+2F^2-8F-6F+24))+F=0
We calculate terms in parentheses: -((+2F^2-8F-6F+24)), so:
(+2F^2-8F-6F+24)
We get rid of parentheses
2F^2-8F-6F+24
We add all the numbers together, and all the variables
2F^2-14F+24
Back to the equation:
-(2F^2-14F+24)
We add all the numbers together, and all the variables
F-(2F^2-14F+24)=0
We get rid of parentheses
-2F^2+F+14F-24=0
We add all the numbers together, and all the variables
-2F^2+15F-24=0
a = -2; b = 15; c = -24;
Δ = b2-4ac
Δ = 152-4·(-2)·(-24)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{33}}{2*-2}=\frac{-15-\sqrt{33}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{33}}{2*-2}=\frac{-15+\sqrt{33}}{-4} $

See similar equations:

| 2(u−14)=72 | | 97+5x-62=180 | | 116=6x-64 | | 65=6x-47 | | 8x-7=10x-12 | | G(n+3)=13+2n/7+n | | (x+5)(x+5)=x^-25 | | 8x+12=7x-11 | | 6/(15/2)=s | | 3x-8+2x+9=-4 | | (15-x)7=-175 | | 3/2y+y=180 | | 2x-12=3x+15 | | 3x^2+33x-540=0 | | x*1.5x=20 | | 8x-11=12x+13 | | 4x-22=5+11 | | 8-(-6s+3)=3s+2 | | (X+7)/14=1-3/2x | | 4x-3÷2=9x-6÷8+2*3/4 | | 4x-22=5x+11 | | 5x+15=2x-12 | | z=3-2 | | 13p−19+20=-3p+1 | | 20x=3x^2 | | j/4+43=52 | | −7r−4= 4r+2 | | 3k-5=7k+11 | | (x+9)÷5=16 | | (a+9)÷5=16 | | (x/9)-7=1 | | 13=s/2 |

Equations solver categories