F(n)=(3n2-4n)2-19(3n2-4n)+60

Simple and best practice solution for F(n)=(3n2-4n)2-19(3n2-4n)+60 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(n)=(3n2-4n)2-19(3n2-4n)+60 equation:



(F)=(3F^2-4F)2-19(3F^2-4F)+60
We move all terms to the left:
(F)-((3F^2-4F)2-19(3F^2-4F)+60)=0
We calculate terms in parentheses: -((3F^2-4F)2-19(3F^2-4F)+60), so:
(3F^2-4F)2-19(3F^2-4F)+60
We multiply parentheses
6F^2-57F^2-8F+76F+60
We add all the numbers together, and all the variables
-51F^2+68F+60
Back to the equation:
-(-51F^2+68F+60)
We get rid of parentheses
51F^2-68F+F-60=0
We add all the numbers together, and all the variables
51F^2-67F-60=0
a = 51; b = -67; c = -60;
Δ = b2-4ac
Δ = -672-4·51·(-60)
Δ = 16729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-67)-\sqrt{16729}}{2*51}=\frac{67-\sqrt{16729}}{102} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-67)+\sqrt{16729}}{2*51}=\frac{67+\sqrt{16729}}{102} $

See similar equations:

| (x^2-4x)^2+(x-2)^2-(10)=0 | | (x^2-4x)^2+(x-2)^2=10 | | m-17=7 | | x+8+x+2x+4=52 | | 7x+2(x+1)=7x-5. | | X^2+2x-7=28 | | x+6+x+3x+7=78 | | 41=3y+14 | | 10x^2=11 | | 2x^2=-5-7x | | 2x+8+x-2=90 | | 2(3a+9)−15=57 | | -7w-5=2 | | -3x^2-7x+10=0 | | 2(x+6)^2-8=0 | | Y=2(x+6)^2-8 | | 9(3+6x)=10 | | z=13=57=34+z | | 7.5/1=x/3 | | K=49=88-k=39 | | 11/14x+9/7=5/7 | | T=44=28-t=72 | | x/8=11/17 | | 5b−4=2b+17 | | 4x-10-x=180 | | M=83=m-32=492 | | 4x-10=x=180 | | 3.9x+34.4=13.8-6.4x | | (4/5)x^2+12=5 | | X=28=x+42=70 | | 3(5x-4)+2(-4+8x)=5(6x+5)+-6 | | C=71=56=c-15 |

Equations solver categories