F(1)=6,f(2)=-6,f(3)=1

Simple and best practice solution for F(1)=6,f(2)=-6,f(3)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(1)=6,f(2)=-6,f(3)=1 equation:



(1)=6.F(2)=-6.F(3)=1
We move all terms to the left:
(1)-(6.F(2))=0
We add all the numbers together, and all the variables
-(+6.F^2)+1=0
We get rid of parentheses
-6.F^2+1=0
We add all the numbers together, and all the variables
-6F^2+1=0
a = -6; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-6)·1
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-6}=\frac{0-2\sqrt{6}}{-12} =-\frac{2\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-6} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-6}=\frac{0+2\sqrt{6}}{-12} =\frac{2\sqrt{6}}{-12} =\frac{\sqrt{6}}{-6} $

See similar equations:

| -3+5x-(7)=-20 | | 15z-47=223 | | d/9+21=22 | | b+59=90 | | g/6+33=39 | | a/4+1=5 | | b+64=90 | | 8=40p | | 12x+9=8+1+4x | | 48-u=22 | | 2j-57=11 | | 6x-8=-4x+9 | | 21=1/2x(4+3) | | 24/m=8 | | 8x19=-12x+61 | | 2/3-4/x=1 | | 340-2x=5x-227 | | 3=2n+n | | 20/b=5 | | -16x+6=16 | | 24=34-b | | 8x9=6x-12 | | x/3+1/4=x/4 | | (-3x-8)÷8=1÷2 | | 45+10x=190 | | 2x+7=37+12x | | 7c=1118 | | 32x+2=14 | | X+2x+3x+2=26 | | x=17=30 | | -2w/9=12 | | 2x2+7=5x |

Equations solver categories