F(1)=5,f(2)=8,f(3)=11,f(4)=14,f(5)=17

Simple and best practice solution for F(1)=5,f(2)=8,f(3)=11,f(4)=14,f(5)=17 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(1)=5,f(2)=8,f(3)=11,f(4)=14,f(5)=17 equation:



(1)=5.F(2)=8.F(3)=11.F(4)=14.F(5)=17
We move all terms to the left:
(1)-(5.F(2))=0
We add all the numbers together, and all the variables
-(+5.F^2)+1=0
We get rid of parentheses
-5.F^2+1=0
We add all the numbers together, and all the variables
-5F^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $

See similar equations:

| 4f+19+15f=19f+19 | | 4x-56=x/4+34 | | x−25=−1 | | m+15=58 | | -81=-5n+9 | | 4(-6y+12)=-19y+8 | | 3x+3x=3x-6 | | (x-13)(x+23)=0 | | 3+k/k;k=3 | | 0(3x+6)=2/3(x-9) | | 15−2x=7−5xA. | | -16c+20c-19=-9+4c | | |2x+12|+2=7x-1 | | -20-3(-2w+10)=6w | | 7y/2=30 | | 4x-10=3x=10 | | 9y–y=–40 | | (3x+2)=(18x-43) | | 20c+17C-5=180 | | -23/10n=-1679/85 | | b-14=1 | | -14z+3-6=-3-14z | | 5x+10=400 | | 1=–v–45 | | -4(4+6x)=-64 | | -6k+4=6k+4-12k | | 4x+5+12-1=-16 | | 3.1x-16.1=8.7 | | 15(2+x)=17x+2 | | 70=7(d+3) | | 2(=10+3y-5) | | x+6=199 |

Equations solver categories