F(1)=3,f(2)=1

Simple and best practice solution for F(1)=3,f(2)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(1)=3,f(2)=1 equation:



(1)=3.F(2)=1
We move all terms to the left:
(1)-(3.F(2))=0
We add all the numbers together, and all the variables
-(+3.F^2)+1=0
We get rid of parentheses
-3.F^2+1=0
We add all the numbers together, and all the variables
-3F^2+1=0
a = -3; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3)·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-3}=\frac{0-2\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-3} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-3}=\frac{0+2\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-6} =\frac{\sqrt{3}}{-3} $

See similar equations:

| b3=7 | | (x+4)+(3x+2)=180 | | -2=2(x-5)-6x | | 4d=92 | | 55=220*x/4000 | | 1/3(15x-9)=2x+4+3x-5 | | 12+160=x | | -12(w-6)=20 | | x=12+160 | | -8x×6x=-10x×3-11 | | 4.5y=16.43+2.3y | | 6x+15=7x+35 | | -0.6+0.5p+0.8-0.6p=-0.2(8+8p)-3(0.1-0.4p) | | 4x+95=127 | | 32x2-50=0 | | w+50=4w+17 | | 1/3*n=3 | | 48=6y-18 | | 49=k/2+13 | | 5×8-2y=30 | | n/8-3=17 | | 15x+6=-15 | | 38-x-x+2=180 | | 84=a/2+56 | | 3x-12=9x-15 | | 2v-6=4v | | y/2-10=13 | | -2y^2-y+10=0 | | 29=1-7x | | -2x+20=-4(x-6) | | -¼x+15=62 | | 1/2x-1/3=1/4 |

Equations solver categories