If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=(940+25D)(218-5D)
We move all terms to the left:
-((940+25D)(218-5D))=0
We add all the numbers together, and all the variables
-((25D+940)(-5D+218))=0
We multiply parentheses ..
-((-125D^2+5450D-4700D+204920))=0
We calculate terms in parentheses: -((-125D^2+5450D-4700D+204920)), so:We get rid of parentheses
(-125D^2+5450D-4700D+204920)
We get rid of parentheses
-125D^2+5450D-4700D+204920
We add all the numbers together, and all the variables
-125D^2+750D+204920
Back to the equation:
-(-125D^2+750D+204920)
125D^2-750D-204920=0
a = 125; b = -750; c = -204920;
Δ = b2-4ac
Δ = -7502-4·125·(-204920)
Δ = 103022500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{103022500}=10150$$D_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-750)-10150}{2*125}=\frac{-9400}{250} =-37+3/5 $$D_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-750)+10150}{2*125}=\frac{10900}{250} =43+3/5 $
| 28x=52 | | 28x=52/28 | | 35r^2+10r=0 | | 12=j/4+10 | | 2/5p= | | 4(-5)+7y=9 | | 33=-3(2x-3) | | 33=5b-22 | | 12-6r=24r+36 | | 1/2+r/7=5/4 | | 7(w-86)=70 | | 11=5x5+1 | | -5.6+-63=x | | 7x^2-10x-4=7 | | c-91/5=1 | | 2b(8b-24)=0 | | -22+14x=28+12x | | 2z+6=16 | | -5.6+-6.3=x | | w/6+22=28 | | 6x+0=5x+10 | | 2x-7÷3=25 | | 12x-146-x=129 | | 2¹/5d=28 | | 1x+45=2x-35 | | 31=10+7s | | 22=x/2+11 | | 8x-5=2x+10+x= | | 3(n-80)=54 | | 2x/x+17=175 | | 20−2p=−2(p+2)+4p | | H=7y+20 |