C(n)=20-10/n

Simple and best practice solution for C(n)=20-10/n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for C(n)=20-10/n equation:



(C)=20-10/C
We move all terms to the left:
(C)-(20-10/C)=0
Domain of the equation: C)!=0
C!=0/1
C!=0
C∈R
We add all the numbers together, and all the variables
C-(-10/C+20)=0
We get rid of parentheses
C+10/C-20=0
We multiply all the terms by the denominator
C*C-20*C+10=0
We add all the numbers together, and all the variables
-20C+C*C+10=0
Wy multiply elements
C^2-20C+10=0
a = 1; b = -20; c = +10;
Δ = b2-4ac
Δ = -202-4·1·10
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$
$C_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-6\sqrt{10}}{2*1}=\frac{20-6\sqrt{10}}{2} $
$C_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+6\sqrt{10}}{2*1}=\frac{20+6\sqrt{10}}{2} $

See similar equations:

| (t-12)+(t+2)=t+32 | | 3x-2x+7=20 | | (a-9)+(a-45)=a+48 | | -3x+6(1+4x)=-99 | | 18x+6=26x-2 | | 42e+18=-24+98e | | 2v+v+2v+3v=8 | | A=32b=-19 | | 3(4x-5)-2x=25 | | 6y-2y=30 | | 2x+25=5-30 | | 7x+7+x=180 | | (7y​6​)(8y​0​)= | | -6=3(y-18)-9 | | 8x^2-6-8x=0 | | a÷6+16=140 | | 12-5x=3-18x | | 17=-2x+6 | | 10+4x=-6x+0 | | 3(4-6n)=84 | | 6x+7x+8x=6 | | 10v=130 | | 1+2/5x=9 | | -198=7x+6(3x-22) | | 5(3x-4)=2(-2x+9) | | 4(x-1)=9x-32 | | x+x-32=131 | | 9x−7+6x−8=45 | | 3x+60=8(x+5) | | 24-6x=4x+7 | | 6x-14=5x-6 | | -88=-3x-2(5x+5) |

Equations solver categories