If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+3/2B+90+(2B-90)+(B+45)=540
We move all terms to the left:
+3/2B+90+(2B-90)+(B+45)-(540)=0
Domain of the equation: 2B!=0We add all the numbers together, and all the variables
B!=0/2
B!=0
B∈R
3/2B+(2B-90)+(B+45)-450=0
We get rid of parentheses
3/2B+2B+B-90+45-450=0
We multiply all the terms by the denominator
2B*2B+B*2B-90*2B+45*2B-450*2B+3=0
Wy multiply elements
4B^2+2B^2-180B+90B-900B+3=0
We add all the numbers together, and all the variables
6B^2-990B+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| 4t+7=t+7 | | (24x-2)+6x+14=102 | | -9h=106 | | 13x+15x=15x+10x | | 4x+2(x-8)=6(x+2) | | 4x+3=3x+5)= | | 9(x+2)+5=4x+5(5+x) | | 2(n+9)=28 | | X²-2x-120=0 | | 5+2q=7.4 | | -x2+4=5-3x | | -3f+5.1=-0.9 | | 2a+3(2a)=180 | | 2(-3+3x)-4(2x=1) | | 9(x+2)+5=4x+5(5+4) | | 66=-6/0(s+3) | | 1.732x-x=480 | | -3.32=h/3-6.32 | | 78+y=100,y= | | 4x2-68x+111=0 | | 50/50=40/b | | 5/6(1-3x)=4-5x/8+2) | | 1.7=3.9w+7.5 | | 30/33=50/a | | 1=50/a | | 11x+14-3x+2=100 | | 120x+122(1-x)=120.26 | | (x+3)^x-1=1 | | x2=1625 | | 5m–8/5=9/5 | | |4n+2|=34* | | 2y-8=6-2y |