If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+3/2B+(B+45)+(2B-90)+90=720
We move all terms to the left:
+3/2B+(B+45)+(2B-90)+90-(720)=0
Domain of the equation: 2B!=0We add all the numbers together, and all the variables
B!=0/2
B!=0
B∈R
3/2B+(B+45)+(2B-90)-630=0
We get rid of parentheses
3/2B+B+2B+45-90-630=0
We multiply all the terms by the denominator
B*2B+2B*2B+45*2B-90*2B-630*2B+3=0
Wy multiply elements
2B^2+4B^2+90B-180B-1260B+3=0
We add all the numbers together, and all the variables
6B^2-1350B+3=0
a = 6; b = -1350; c = +3;
Δ = b2-4ac
Δ = -13502-4·6·3
Δ = 1822428
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1822428}=\sqrt{36*50623}=\sqrt{36}*\sqrt{50623}=6\sqrt{50623}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1350)-6\sqrt{50623}}{2*6}=\frac{1350-6\sqrt{50623}}{12} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1350)+6\sqrt{50623}}{2*6}=\frac{1350+6\sqrt{50623}}{12} $
| x^2+5x-19x=4 | | x-17=-41. | | 3(2x+2.50)=31.50 | | -(835/108)-3r/2=2/3(5r/6-8) | | (1/3)x-2=(13/15)-0.7x | | 9+-3.2=6.8+8x | | -835/108-3r/2=2/3(5r/6-8) | | 2x+7-1+3x=x+4x+6 | | 10x-47=7x+13 | | (8x-20)+2x=0 | | (8v-12)=68 | | f=(0.6)(14)(9.8) | | (b)+6=16 | | -(y-5)^2=36 | | 5x+x=28 | | (8x-20)+2=0 | | 7t-4=-24 | | 16x-2+12x+5=180 | | 16=33x | | 15=3x+2x=10 | | (a+7)=5 | | -3x+4=6x+-5 | | 2n=60-n | | 16x-2=12x+5 | | (-2x)=6 | | 0.75x/0.25=1,900/0.25 | | 4.5-5.5=x | | (8x-20)=2x | | 3.9+10m=6.83 | | 3(2.50x+2)=31.50 | | 4=6-x13 | | 4x/3-11=5 |