A=(9+n)(1-n)

Simple and best practice solution for A=(9+n)(1-n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(9+n)(1-n) equation:



=(9+A)(1-A)
We move all terms to the left:
-((9+A)(1-A))=0
We add all the numbers together, and all the variables
-((A+9)(-1A+1))=0
We multiply parentheses ..
-((-1A^2+A-9A+9))=0
We calculate terms in parentheses: -((-1A^2+A-9A+9)), so:
(-1A^2+A-9A+9)
We get rid of parentheses
-1A^2+A-9A+9
We add all the numbers together, and all the variables
-1A^2-8A+9
Back to the equation:
-(-1A^2-8A+9)
We get rid of parentheses
1A^2+8A-9=0
We add all the numbers together, and all the variables
A^2+8A-9=0
a = 1; b = 8; c = -9;
Δ = b2-4ac
Δ = 82-4·1·(-9)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-10}{2*1}=\frac{-18}{2} =-9 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+10}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 26)12k2-74k+78=0 | | 4x/6=22 | | 3•y=32+y | | x^+9=0 | | 9=1+5x-2 | | 12x-x^2+x=0 | | 30+2/3=r | | 4n-8=80 | | 3x-2=23+2x | | (4u+2)(1-u)=0 | | 12x-x^2-x=0 | | 2x/3=61 | | 2(1/3x)=2(1/10 | | x^-18x+85=0 | | 4x/2=29 | | 2x-7/3+8x-9/14=3x-5/21 | | 5(x+20)=6 | | 14+10y=9y-4 | | x/5+(1/3)x=7-x | | 2/3(x+12)+2/3=-4 | | 1.5x=220400 | | (2x-60)=(x+20) | | 100n^2-2n=0 | | 2n(50n-1)=0 | | 2b+5=b-2 | | -5(3m=+6)=-3(4m-2) | | 37=9x−155 | | 9x-5-8x=4 | | 8+9a−7=3 | | 2x+9988555555555555555555555555555555555=5 | | 2(1+m)=-16 | | 3x-103=180 |

Equations solver categories