If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=((70+2A)(50+2A))-120
We move all terms to the left:
-(((70+2A)(50+2A))-120)=0
We add all the numbers together, and all the variables
-(((2A+70)(2A+50))-120)=0
We multiply parentheses ..
-(((+4A^2+100A+140A+3500))-120)=0
We calculate terms in parentheses: -(((+4A^2+100A+140A+3500))-120), so:We get rid of parentheses
((+4A^2+100A+140A+3500))-120
We calculate terms in parentheses: +((+4A^2+100A+140A+3500)), so:We get rid of parentheses
(+4A^2+100A+140A+3500)
We get rid of parentheses
4A^2+100A+140A+3500
We add all the numbers together, and all the variables
4A^2+240A+3500
Back to the equation:
+(4A^2+240A+3500)
4A^2+240A+3500-120
We add all the numbers together, and all the variables
4A^2+240A+3380
Back to the equation:
-(4A^2+240A+3380)
-4A^2-240A-3380=0
a = -4; b = -240; c = -3380;
Δ = b2-4ac
Δ = -2402-4·(-4)·(-3380)
Δ = 3520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3520}=\sqrt{64*55}=\sqrt{64}*\sqrt{55}=8\sqrt{55}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-8\sqrt{55}}{2*-4}=\frac{240-8\sqrt{55}}{-8} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+8\sqrt{55}}{2*-4}=\frac{240+8\sqrt{55}}{-8} $
| 3x+19+14+19=90 | | 2m+5=35* | | 1.2x+2.4=6.0 | | 70+(3x–10)+7x=180 | | 4w+3=17/2 | | 14x+24=88-2x | | h+7/13=13 | | –4(j−12)+17=–3 | | 13=t+7* | | 32p+1=5(p+1) | | -3x=-58 | | 7x-5+7x+2=6x+3+8x-6 | | 3x+x+14+19=90 | | 2^(3x)=7 | | 2/7x-14=6 | | 0=x2+8x-3 | | 7x-4=3x+76 | | 2=x2+8x | | 2.4h+7-9.1h=13 | | -12f-3f+10=25 | | 4x(4000-x)=200 | | -3x-46=5.9 | | 5x-45=25 | | 120=40+3x | | 7+5x-3=3(x+2) | | 7^7x-3=52 | | -4/5+x=1/3 | | 10x+90=120 | | 2/3*q+8=q-10 | | -2(y+4)-3=41 | | 3+15t-2=9t+56-5t | | 24=300-12r |