A2+b2=144

Simple and best practice solution for A2+b2=144 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A2+b2=144 equation:



2+A2=144
We move all terms to the left:
2+A2-(144)=0
We add all the numbers together, and all the variables
A^2-142=0
a = 1; b = 0; c = -142;
Δ = b2-4ac
Δ = 02-4·1·(-142)
Δ = 568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{568}=\sqrt{4*142}=\sqrt{4}*\sqrt{142}=2\sqrt{142}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{142}}{2*1}=\frac{0-2\sqrt{142}}{2} =-\frac{2\sqrt{142}}{2} =-\sqrt{142} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{142}}{2*1}=\frac{0+2\sqrt{142}}{2} =\frac{2\sqrt{142}}{2} =\sqrt{142} $

See similar equations:

| 16-6x=+6-7x | | x/12−1=-6 | | 3x2+12=204 | | 10(2g-8)=24 | | 14x^+6x-2x=0 | | 15x-20=x | | 3(m+2)=-4(2m-9) | | 5x÷8-3÷10=7x÷40 | | x*2/5-1/9=x*3/9+4/5 | | -4(2x+1)+x-7=5x-(3-5x) | | 15x^2+35x-100=0 | | x/4-6/5=x/3 | | 8m+4=3(m-1+7 | | (50-2x)(120-2x)=3000 | | y= | | x²-14=5x²-50 | | 3y2-2y-5=0 | | 2x²+3=131 | | x²=4/9 | | |3k-2|=15 | | -3(a-4.6)+2.3=-6.4 | | -4x+3=7x+25 | | 7x=9x-40 | | 2(t+4)+1.34=19.34 | | 18.77=3.5(d–12.6)+3.37 | | -2.44=2.44(m+-4) | | (X-5)(2x-7)=4 | | 3n+10=-8+6n | | 3x+5=4x+x | | 7x+2=2x+14 | | 36÷x=(-4) | | 135=(13x/3)+(5x-5) |

Equations solver categories