A+1/5a-1/a=1

Simple and best practice solution for A+1/5a-1/a=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A+1/5a-1/a=1 equation:



+1/5A-1/A=1
We move all terms to the left:
+1/5A-1/A-(1)=0
Domain of the equation: 5A!=0
A!=0/5
A!=0
A∈R
Domain of the equation: A!=0
A∈R
We calculate fractions
A/5A^2+(-5A)/5A^2-1=0
We multiply all the terms by the denominator
A+(-5A)-1*5A^2=0
Wy multiply elements
-5A^2+A+(-5A)=0
We get rid of parentheses
-5A^2+A-5A=0
We add all the numbers together, and all the variables
-5A^2-4A=0
a = -5; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·(-5)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*-5}=\frac{0}{-10} =0 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*-5}=\frac{8}{-10} =-4/5 $

See similar equations:

| 175m+125m+43,650=45,225+175m | | 15−4x=10x+45 | | 16x-25+3x+58=90 | | x*x+13=75 | | -5(x+-4)=35 | | 175m+125m+45,225=43,650+175m | | 8x-10=50 | | x*2+13=75 | | 12/x=-3(12) | | 3x+-5=-17 | | x•x+13=75 | | 20x=124 | | 5b+60=11b | | 3-8=n+4 | | 9^x+4(3^x)-3=0 | | 20(8-n)+6n=174 | | 5(x+-4)=35 | | 1/3x-(-2)=3 | | 12/x=-36 | | 15x-22+5x+12=90 | | 12/5x-1/3=x+2 | | 6x+3=18x+15 | | 31/4=31.4y | | 10x+40-40=180-40 | | 1/3x-9=-9 | | 8h-5=11h-9 | | (y-4)/3=9 | | 1/3x-1=12 | | 3x+7x+1+39=180 | | -8b+5=-11 | | -8b+5=11 | | 0.05x^2+12x-800=0 |

Equations solver categories