A(12)=x(24-x)

Simple and best practice solution for A(12)=x(24-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A(12)=x(24-x) equation:



(12)=A(24-A)
We move all terms to the left:
(12)-(A(24-A))=0
We add all the numbers together, and all the variables
-(A(-1A+24))+12=0
We calculate terms in parentheses: -(A(-1A+24)), so:
A(-1A+24)
We multiply parentheses
-1A^2+24A
Back to the equation:
-(-1A^2+24A)
We get rid of parentheses
1A^2-24A+12=0
We add all the numbers together, and all the variables
A^2-24A+12=0
a = 1; b = -24; c = +12;
Δ = b2-4ac
Δ = -242-4·1·12
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{33}}{2*1}=\frac{24-4\sqrt{33}}{2} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{33}}{2*1}=\frac{24+4\sqrt{33}}{2} $

See similar equations:

| 4x-4=5x-84x−4=5x−8 | | 6(x+4)+7x=128 | | -5(6x+9)=-23x+-7+-9+-5 | | 2(x+6)+2(1/2x)=24 | | -113=-4-6x-1 | | 12.5f+6.76=7.43+15f-3.67 | | 2x+11x+15x=168 | | 4g-10g=12 | | 18w-10w-3w-5w+w=18 | | 2x+2(1/2x)+6=24 | | -6(5p+2)=198 | | 2x+11x+15=168 | | 10=-2(s+7) | | 3(x-6)=+4x+18 | | 2(-x)=4(-2+4) | | 8=-16t^2+20t | | -17t-(-8t)+5t=16 | | -18b=-13-18b | | 1.2=4x-5-x+1.4 | | -3(4x+7)+4=113 | | 5(8-4r)=200 | | x+6+x+6+1/2x+1/2x=24 | | 10–2y=26 | | 5p—7=28 | | 11h-2h-2=16 | | -18.48-19s=-16.6s | | 50x-35=140 | | 5x+x-3x=15 | | -8(-3+4m)=-168 | | 4x-20=6x+-44 | | 6(1-5x)-2x=-90 | | -4(x+2)+2x=3(-4x-6) |

Equations solver categories