If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2-12z+1=0
a = 9; b = -12; c = +1;
Δ = b2-4ac
Δ = -122-4·9·1
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{3}}{2*9}=\frac{12-6\sqrt{3}}{18} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{3}}{2*9}=\frac{12+6\sqrt{3}}{18} $
| B2+2.005b+0.028224=0 | | 59x-3)+2x=41 | | 10x+4+x=5+11x–1 | | x+15=(x-5)*2 | | t/7+4=102 | | 98+x=141 | | 2/x-6+5/x+2=4x+1/x^2-4x-12 | | (2x-5)(x+2)(x-7)=0 | | 9x-20=3x+22 | | -3=g-8 | | 3b-33=27-2b | | 11+6x−14=3/5(15x−5 | | -4.62x-12.02=6.46 | | 5x-6=+21 | | 5.8t+15=14 | | -4=3+79x-1) | | (y+15)=(3y-25) | | 5(4x–20)+3x=7x+28 | | x^2+2x+1=7918-2x | | 15h+75=50h+20 | | d-1/4=1/4 | | 3g2-2g-40=0 | | 4x+2.50=34.50 | | 5•2^3x=21 | | 2x/54=4x-6 | | 134=4+10x | | 3u+6.8= | | 2x-3B=A | | 2p2-5p-42=0 | | 9-x+4x=9 | | 36y-1=6 | | 2(5x+8)=-34 |