If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2=4
We move all terms to the left:
9y^2-(4)=0
a = 9; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·9·(-4)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*9}=\frac{-12}{18} =-2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*9}=\frac{12}{18} =2/3 $
| 4(x+2.9)+2x=3(x-3)+5.6 | | 2y+4=y+3 | | (10x+1)(12x-5)=180 | | -4(4-x)-2=-2(x-3)-2 | | -x+7.6=2x+4,6 | | 3/7a=10/14 | | X2+y2+y=0 | | X^2+y^2+y=0 | | -2z+7,5+3z=4.5 | | 2x^2−9=−6 | | 2x2−9=−6 | | 5x+7/7-4=7 | | 3-y+7=13 | | 165x-10=255x-10 | | 5x/2+4=2 | | n2+5=21. | | 10x(3=5 | | 6(-x+4)=23 | | 144d2−96d=−16 | | x-9/5=1 | | 4x(.x+9)=16 | | 4(-x+9=16 | | 2x3=6x5+6=36 | | -3(3x-8)=26 | | 2x3=6x5+6 | | 3/4+2x=3/2 | | x.2+4=18 | | -0.25x=-0.5 | | 0.1x=-0,2 | | 3(2x-1)-2=2(x+7)+1=5 | | X^4-21x2+20x=0 | | X4-21x2+20x=0 |