If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2=16
We move all terms to the left:
9y^2-(16)=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| -4n–1=23–9n | | Y=(4x-1)(x+7) | | x+46+114=180 | | -5.1-6z-1.9-4z=-9z+3.6 | | x=1830 | | 6x+7-2x=-x-8 | | 2x2+x-22=0 | | 3g+24=-8 | | 3^(x)-5=22 | | 2(1-3c)+8c=0 | | (x+4)^2/3=4 | | (x+4)23=4 | | (2x-48)=÷108 | | M=n²+2n | | 120=n²+2n | | 1/4x+10=5x+3 | | 19/6+1.5x=x | | -5g=+2.3=-18.8 | | 0=x2+13x+36 | | 5^(2x-8)=(1/25) | | e=6,63.10-346,25.10-7 | | 6,25.10-7=6,63.10-34f | | -7+6=-4w^2 | | 10-4p=30 | | 56x+49=7(7x+6)+7x-7 | | -3/5a=3 | | -4×-y=-28 | | 8x-24+86-2x+x=130 | | 5(3n+2)=6(8n+7)+1 | | 28-7w=21w | | 8x-24+86-2x=130 | | 8t=$134 |