If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-96y+24=0
a = 9; b = -96; c = +24;
Δ = b2-4ac
Δ = -962-4·9·24
Δ = 8352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8352}=\sqrt{144*58}=\sqrt{144}*\sqrt{58}=12\sqrt{58}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-12\sqrt{58}}{2*9}=\frac{96-12\sqrt{58}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+12\sqrt{58}}{2*9}=\frac{96+12\sqrt{58}}{18} $
| 14k+k-7k-7k=16 | | 4+7x=3-20x | | -7=7d-7 | | 2u+3u^2-8=0 | | x+2-3x+4=4x+3-x+2 | | 11v+5v+4v-17=3 | | 2/10+x/100=5/10 | | -9p-15=95 | | 8x–3(8x)2=x | | 13w+5w+w-16w+1=16 | | 1/2(x^2+3x)-77=0 | | 4x-3=(1)/(3)(9x+18)-5 | | -11=x÷19 | | -2y+2-410=24 | | 3x+3-1=17 | | 14w-8w+3w+1=19 | | 2/10+x/100=5/x | | 3x+8-2x=6 | | 360=130+2c | | 6-7v=69 | | 8x-(3x-14)=2x+26 | | u+3=11 | | (6)-v7=-69 | | 25+5/2y-1/2y=3 | | 8-3(2x-3)=(-12)x-1 | | 3x+26=7x+6 | | 20-x=35-2x=15 | | x+7+6x+10+3x+3=180 | | 5/6=k/25 | | 4x+39=7x+9 | | 1/4=b/27 | | 3x/2+4=2x-1 |