If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+6y+1=0
a = 9; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·9·1
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$y=\frac{-b}{2a}=\frac{-6}{18}=-1/3$
| -15x+10=6x+5 | | 4x^2=147 | | 1/2-8/3y=-5/4 | | 10x=7x+180 | | f3+ 12=16 | | 5a+45=5a+45 | | (h+3)(h+3)(h+3)=300 | | (h+3)^3=300 | | Y-10=-1/2x-18 | | (h+3)^3=10 | | 2x-10=8-4(x-3) | | (5x+8/9)+(2x+9/3)=10 | | 4x+4=7x-9 | | (x^2+6x)^2+13(x^2+6x)=-40 | | N+2n+4n+6n=126 | | 9x+8.2=6.1x-9.3 | | 12=6q | | 27x-15=28x+24 | | 18x+81=15x+24 | | 3-5x=-5x+18-x | | 2x/(2x+10)=1/(2x+10)+3/2 | | 8−v=-2v | | 17+4x+9=11x-9 | | 4t16−2t=t+9+4t16, | | 23+y-19=79 | | x^2-68x+184=0 | | 3g+(-7+4g)=1-g | | -44=-w/3 | | -3v-6=-4 | | 9x~7=29 | | -14=g/3+-10 | | 3x+6=−135;−45,−46,−47 |