If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+12y-14=0
a = 9; b = 12; c = -14;
Δ = b2-4ac
Δ = 122-4·9·(-14)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18\sqrt{2}}{2*9}=\frac{-12-18\sqrt{2}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18\sqrt{2}}{2*9}=\frac{-12+18\sqrt{2}}{18} $
| x2+x-56=1 | | 10+5z=5z= | | 6x+5=0x+3 | | 24+2=6x | | x/3+x/5+x/7=71 | | 7t=50 | | 8x+7=5x-17 | | k+60=180 | | 9t=60 | | 1/f=1/2=5/6 | | -2x+4=-3-2x | | 9x+8=3x+2 | | 19t=50 | | x=330/6=55 | | 4x+27=172 | | (2x+5)=105 | | 64+c=92 | | 25x-47=36 | | 7x+5=4x+3 | | P+3÷10p=13÷10 | | -34+4x=27-2x | | -7-4x=8-2x-8x | | x/3-(-4)=-2 | | 3(x2-1)+7=6x-3-2(2-4x) | | 5y-2=9+2 | | x=330/6 | | 3t+12-18=36 | | -24=13x | | 3(5x-2)=7(2x+9) | | 8x-8=4(x+8) | | 6(v-1)=8v-20 | | -4+3x=-12+36x |