9y(7y-5)-(3y+7)=

Simple and best practice solution for 9y(7y-5)-(3y+7)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9y(7y-5)-(3y+7)= equation:


Simplifying
9y(7y + -5) + -1(3y + 7) = 0

Reorder the terms:
9y(-5 + 7y) + -1(3y + 7) = 0
(-5 * 9y + 7y * 9y) + -1(3y + 7) = 0
(-45y + 63y2) + -1(3y + 7) = 0

Reorder the terms:
-45y + 63y2 + -1(7 + 3y) = 0
-45y + 63y2 + (7 * -1 + 3y * -1) = 0
-45y + 63y2 + (-7 + -3y) = 0

Reorder the terms:
-7 + -45y + -3y + 63y2 = 0

Combine like terms: -45y + -3y = -48y
-7 + -48y + 63y2 = 0

Solving
-7 + -48y + 63y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
63 the coefficient of the squared term: 

Divide each side by '63'.
-0.1111111111 + -0.7619047619y + y2 = 0

Move the constant term to the right:

Add '0.1111111111' to each side of the equation.
-0.1111111111 + -0.7619047619y + 0.1111111111 + y2 = 0 + 0.1111111111

Reorder the terms:
-0.1111111111 + 0.1111111111 + -0.7619047619y + y2 = 0 + 0.1111111111

Combine like terms: -0.1111111111 + 0.1111111111 = 0.0000000000
0.0000000000 + -0.7619047619y + y2 = 0 + 0.1111111111
-0.7619047619y + y2 = 0 + 0.1111111111

Combine like terms: 0 + 0.1111111111 = 0.1111111111
-0.7619047619y + y2 = 0.1111111111

The y term is -0.7619047619y.  Take half its coefficient (-0.380952381).
Square it (0.1451247166) and add it to both sides.

Add '0.1451247166' to each side of the equation.
-0.7619047619y + 0.1451247166 + y2 = 0.1111111111 + 0.1451247166

Reorder the terms:
0.1451247166 + -0.7619047619y + y2 = 0.1111111111 + 0.1451247166

Combine like terms: 0.1111111111 + 0.1451247166 = 0.2562358277
0.1451247166 + -0.7619047619y + y2 = 0.2562358277

Factor a perfect square on the left side:
(y + -0.380952381)(y + -0.380952381) = 0.2562358277

Calculate the square root of the right side: 0.50619742

Break this problem into two subproblems by setting 
(y + -0.380952381) equal to 0.50619742 and -0.50619742.

Subproblem 1

y + -0.380952381 = 0.50619742 Simplifying y + -0.380952381 = 0.50619742 Reorder the terms: -0.380952381 + y = 0.50619742 Solving -0.380952381 + y = 0.50619742 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.380952381' to each side of the equation. -0.380952381 + 0.380952381 + y = 0.50619742 + 0.380952381 Combine like terms: -0.380952381 + 0.380952381 = 0.000000000 0.000000000 + y = 0.50619742 + 0.380952381 y = 0.50619742 + 0.380952381 Combine like terms: 0.50619742 + 0.380952381 = 0.887149801 y = 0.887149801 Simplifying y = 0.887149801

Subproblem 2

y + -0.380952381 = -0.50619742 Simplifying y + -0.380952381 = -0.50619742 Reorder the terms: -0.380952381 + y = -0.50619742 Solving -0.380952381 + y = -0.50619742 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '0.380952381' to each side of the equation. -0.380952381 + 0.380952381 + y = -0.50619742 + 0.380952381 Combine like terms: -0.380952381 + 0.380952381 = 0.000000000 0.000000000 + y = -0.50619742 + 0.380952381 y = -0.50619742 + 0.380952381 Combine like terms: -0.50619742 + 0.380952381 = -0.125245039 y = -0.125245039 Simplifying y = -0.125245039

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.887149801, -0.125245039}

See similar equations:

| (m-4)(m-7)=0 | | 2w^2-5w=12 | | 1x(15-x)=8.25 | | -3x+8=37 | | 0.25x+1y=8.25 | | -8x+14=6 | | 30=2b+10 | | x^2-110x+400=0 | | -2.3q+166=-5q-38 | | (3x/3)=10 | | x^2-110+400=0 | | 1.5=1.5y | | ln(x)+7=19 | | 3x/3=10 | | f(x)=2x-1.1 | | 12x^7+4x^5+3x^4+x^2= | | 2y+8x=17 | | a-(-3)=6 | | 2x^2-72=10x | | 2x-36=4.4 | | 2a-(-3)=3 | | 22=5-3(x-9)+5x | | 4x^2+4x+325=0 | | log(x-8)=2 | | (X+7)(x-4)=32 | | 49k^2+16k=0 | | 15(15)=x(14x) | | (8x+x^2)+(-2y+y^2)=64 | | 3x+y+2x+y+2+x+3y=180 | | 8n^3+36n^2+2n+9=0 | | 1/3x1/3x1-3 | | -42=-2-4(2+2x) |

Equations solver categories