If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=43
We move all terms to the left:
9x^2-(43)=0
a = 9; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·9·(-43)
Δ = 1548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1548}=\sqrt{36*43}=\sqrt{36}*\sqrt{43}=6\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{43}}{2*9}=\frac{0-6\sqrt{43}}{18} =-\frac{6\sqrt{43}}{18} =-\frac{\sqrt{43}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{43}}{2*9}=\frac{0+6\sqrt{43}}{18} =\frac{6\sqrt{43}}{18} =\frac{\sqrt{43}}{3} $
| 2x²-5x+6=0 | | (5b-6)+2=14 | | 3n^2-22n+7=0 | | 2x²-5x+6=0* | | 9=3(p+1) | | 9=3(p+1) p | | 2(4^x)-32=96 | | 2(4x)-32=96 | | -22=4x=6 | | 5a+24=13a | | 4y+6=6y-2 | | 6e+20=10e | | -6x+43=83 | | -14x+25=193 | | 9y-4=6y+11 | | 25-18x=-65 | | 196+14x=392 | | 7(2+-4)=3(7t-2)-8 | | 3x/4-12=24 | | −2(−3x+4)+3x−3=-29 | | 2.75/6=p | | 4x-1/2(x+1)={x+1/25} | | 6y-7=3y+-1 | | 3x-17=2x+4 | | 41=-y/6 | | 9z=124 | | x2+10x–75=0 | | 4(3x=3)=3(5x+0.5) | | 3x-2/5+x-1/3-4x-3/15=10 | | v/3-11=19 | | 14p+13=15 | | 11-4x=23-6x |