If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=36x
We move all terms to the left:
9x^2-(36x)=0
a = 9; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·9·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*9}=\frac{72}{18} =4 $
| 20-x=(x+6)+15 | | 87-(4x)=39 | | 39(4x)=87 | | x/4.25=34/x= | | d/8+72=80 | | 3(2^t)=21 | | .5x+2.5=17 | | 8+n=26 | | d/8+ 72=80 | | 39-87=4x | | 2-8n=558 | | 23+3m=53 | | 3x+5–8x=20 | | x+x+x+x+39=87 | | 24(x-2)=12(3x-1) | | 8.1=x/5 | | 8b−15=25 | | -9=(2g-3) | | 24(x-2)=12(3x-1 | | 6(y=1)-y=4y+9 | | 2(t+10)=50 | | 3(x-5)-1-x=5 | | x+-23=-8 | | -14+a=26 | | 5b=15=90 | | 12(x-2)=24(3x-1) | | 7m+8=85 | | 25+6s=79 | | 3/7x-8=1 | | (5x+3)+(2x+16)=180 | | 3i+I-10=0 | | Y=-10x+122 |