If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-8x+1=0
a = 9; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·9·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{7}}{2*9}=\frac{8-2\sqrt{7}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{7}}{2*9}=\frac{8+2\sqrt{7}}{18} $
| x5+-2x3+x=0 | | 6k+9=-51 | | 6y²+5y=4 | | 4|2x-1|=28 | | A+5b+3=27 | | 2(h+1)=5h-8 | | 6x—7=5+2x | | 180=2x+3x-40 | | 1/8=2y | | 5(3n-4)=45 | | 5(n-7)=45 | | (5y-7)+98=180 | | 8(x+4)=72. | | 120÷6=4x | | 5h+3.9=4.3h+9.36 | | 125=-16t^2+85t+1/12 | | 7x+5x-31-8+63=180 | | 7=y–2 | | 1.5=y–(-5.6) | | -10t=-100 | | 8x-3=4(3x) | | x/10+9=4 | | -x^2-16x+225=0 | | 48-x=7x+28 | | 6(2x+4)-2=4 | | 2^3m=8 | | 48-x=7x-28 | | 5x-7*3x=2 | | V=15(3.14)9h | | 11l+42=78+10l | | x^2+16-10x=0 | | 12x+24-2=4 |