If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-25x=0
a = 9; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·9·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*9}=\frac{50}{18} =2+7/9 $
| y+7÷3=8 | | 0.125x+20=32 | | (b+32)/8=24-12b | | p=-12 | | m^2+22m+40=0 | | -5b-11=10b-10-14b | | 75x-9=7 | | (b/8)+4=24-12b | | 75-9x=7 | | -12k+17=-10k-13 | | 8x-32=14+8x | | 120=10n+20 | | 15+3u=-2u | | 2(2x-9)=39 | | -7h+9+7h=-1+2h | | 2x-x-1=1 | | r2=144 | | 4(c+5)+2c=-9 | | v+10=-3v-8-5v | | F(x)=3x^2-8x | | 125x+20=32 | | 10-5w=-4w | | 12v^2=2v-1 | | -5u+4=8u=43 | | 30=8-2y | | 5(x-3)=(x+5) | | 0.25x+10=48 | | 8d=4+9d | | -5(x+1)+3x=6-6(4x-3) | | 5+2x=-23-3x | | -9-b=-10b+9 | | 0.25x-10=70 |